home *** CD-ROM | disk | FTP | other *** search
- TK!2
- =v
- #1
- :n
- X
- :v
- 5
- :s
- i
- :c
- given X
- #2
- :n
- Y
- :s
- b
- :c
- predicted Y
- #3
- :n
- dY
- :s
- b
- :c
- tolerance of predicted y
- #4
- :n
- a
- :s
- b
- :c
- intercept in Y = a + b*X
- #5
- :n
- b
- :s
- b
- :c
- slope in Y = a + b*X
- #6
- :n
- t
- :v
- 2.447
- :s
- i
- :c
- t-value = f(confidence level,n-2 dof)
- #7
- :n
- xav
- :s
- b
- :c
- average x value
- #8
- :n
- yav
- :s
- b
- :c
- average y value
- #9
- :n
- SXX
- :s
- b
- :c
- sum of squares of x's
- #10
- :n
- SYY
- :s
- b
- :c
- sum of squares of y's
- #11
- :n
- SXY
- :s
- b
- :c
- sum of cross products
- #12
- :n
- SSR
- :s
- b
- :c
- sum of squares due to regression
- #13
- :n
- rXY
- :s
- b
- :c
- correlation coefficient
- #14
- :n
- RMS
- :s
- b
- :c
- residual mean square
- #15
- :n
- SER
- :s
- b
- :c
- standard error of regression
- #16
- :n
- n
- :v
- 8
- :s
- i
- :c
- number of observations
- #17
- :n
- x1
- :v
- 2.4
- :s
- i
- :c
- data
- #18
- :n
- x2
- :v
- 3.7
- :s
- i
- :c
- " Note: When n < 8 , 8-n pairs of
- #19
- :n
- x3
- :v
- 4.3
- :s
- i
- :c
- " xi,yi must be assigned 0.
- #20
- :n
- x4
- :v
- 5.5
- :s
- i
- :c
- "
- #21
- :n
- x5
- :v
- 6
- :s
- i
- :c
- " There are no limits on number of
- #22
- :n
- x6
- :v
- 6.1
- :s
- i
- :c
- " observations in TK Solver Plus
- #23
- :n
- x7
- :v
- 7.6
- :s
- i
- :c
- " (except for computer memory)
- #24
- :n
- x8
- :v
- 8.1
- :s
- i
- :c
- "
- #25
- :n
- y1
- :v
- 3.5
- :s
- i
- :c
- "
- #26
- :n
- y2
- :v
- 3.7
- :s
- i
- :c
- "
- #27
- :n
- y3
- :v
- 4.2
- :s
- i
- :c
- "
- #28
- :n
- y4
- :v
- 4.4
- :s
- i
- :c
- "
- #29
- :n
- y5
- :v
- 4.7
- :s
- i
- :c
- "
- #30
- :n
- y6
- :v
- 5.2
- :s
- i
- :c
- "
- #31
- :n
- y7
- :v
- 5.3
- :s
- i
- :c
- "
- #32
- :n
- y8
- :v
- 6.1
- :s
- i
- :c
- "
- =u
- =r
- #1
- :r
- xav = sum(x1,x2,x3,x4,x5,x6,x7,x8)/n " *** Regression Analysis ***
- #2
- :r
- yav = sum(y1,y2,y3,y4,y5,y6,y7,y8)/n
- #3
- :r
- SXX = sum(x1^2,x2^2,x3^2,x4^2,x5^2,x6^2,x7^2,x8^2) - n*xav^2
- #4
- :r
- SYY = sum(y1^2,y2^2,y3^2,y4^2,y5^2,y6^2,y7^2,y8^2) - n*yav^2
- #5
- :r
- SXY = sum(x1*y1,x2*y2,x3*y3,x4*y4,x5*y5,x6*y6,x7*y7,x8*y8) - n*xav*yav
- #6
- :r
- b = SXY/SXX " - - - - - - - - - - - - - - - - - - - - - - - - - -
- #7
- :r
- yav = a + b*xav " One advantage of using TK for statistical analysis
- #8
- :r
- " and especially for curve fitting is the ease of
- :s
- C
- #9
- :r
- SSR = SXX*b^2 " alternating between analysis and prediction. Here
- #10
- :r
- rXY^2 = SSR/SYY " the calculated values of regression coefficients
- #11
- :r
- RMS = (SYY-SSR)/(n-2) " were used to find Y at X=5. In TK Solver Plus with
- #12
- :r
- SER^2 = RMS " lists, procedures, graphics, etc., the statistical
- #13
- :r
- " models are more elegant, powerful and easy to use.
- :s
- C
- #14
- :r
- " - - - - - - - - - - - - - - - - - - - - - - - - - -
- :s
- C
- #15
- :r
- Y = a + b*X " *** P r e d i c t i o n ***
- #16
- :r
- dY = t * sqrt(RMS*(1+1/n+(X-xav)^2/SXX)) " (based on analysis)
- %Tr,f,0,1,0,1,0
-